Introduction to Deep Learning for Facial Understanding

Part III: Regional CNNs

Raymond Ptucha, Rochester Institute of Technology, USA

Tutorial-9
May 19, 2018

1

Fair Use Agreement

This agreement covers the use of all slides in this document, please read carefully.

- You may freely use these slides, if:
 - You send me an email telling me the conference/venue/company name in advance, and which slides you wish to use.
 - You receive a positive confirmation email back from me.
 - My name (R. Ptucha) appears on each slide you use.

(c) Raymond Ptucha, rwpeec@rit.edu
Agenda

- 9-9:30am Part I: Introduction
- 9:30-10:00am Part II: Convolutional Neural Nets
- 10:00-10:30am Part III: Fully Convolutional Nets
- 10:30-10:45am Break
- 10:45-11:15am Part IV: Facial Understanding
- 11:15-11:35am Part V: Recurrent Neural Nets
- 11:35-11:55pm Part VI: Generative Adversarial Nets
- 11:55-12:30am Hands-on with NVIDIA DIGITS

Vision Tasks

- **Classification**: Single Object
- **Classification + Localization**: Single Object
- **Object Detection**: Multiple Objects
- **Instance Segmentation**: Multiple Objects
Classification vs. Classification + Localization

Classification
Input: Image
Output: Class label
Evaluation metric: Accuracy

Classification + Localization
Input: Image
Output: Class label, Box coordinates
Evaluation metric: Intersection over Union (IoU)

Classification with Localization

Lets allow a few classes:
1. Car
2. Truck
3. Pedestrian
4. Motorcycle

For now, lets assume one object per image.
Each object has \{x, y, w, h\}
For this image, object location \{x, y, w, h\} = \{0.4, 0.6, 0.4, 0.3\}
Classification with Localization

Four classes:
1. Car
2. Truck
3. Pedestrian
4. Motorcycle

Localization \{x, y, w, h\}

Define \(y \) label:
\[
\begin{bmatrix}
P_c \\
b_x \\
b_y \\
b_w \\
b_h \\
C_1 \\
C_2 \\
C_3 \\
C_4
\end{bmatrix}
\]

Probability of an object
Bounding box location
0/1 for each class

Cost function (squared error):
\[
Loss = \sum_{i=1}^{9} (\hat{y}_i - y_i)^2 \quad \text{if } y_i = 1
\]

\[
Loss = (\hat{y}_1 - y_1)^2 \quad \text{if } y_i = 0
\]
Classification with Localization

Four classes:
1. Car
2. Truck
3. Pedestrian
4. Motorcycle
Localization \(\{x, y, w, h\}\)

Alternate cost function:
- \(y_1\) can be logistic loss
- \(y_2 \rightarrow y_5\) can be squared error
- \(y_6 \rightarrow y_9\) can be softmax cross entropy

\[
y = \begin{bmatrix}
1 \\
0.3 \\
0.6 \\
0.4 \\
0.3 \\
0 \\
1 \\
0 \\
0
\end{bmatrix} \quad \begin{bmatrix}
P_c \\
b_x \\
b_y \\
b_w \\
b_h \\
C_1 \\
C_2 \\
C_3 \\
C_4
\end{bmatrix} \quad y = \begin{bmatrix}
0 \\
? \\
? \\
? \\
? \\
? \\
? \\
? \\
?
\end{bmatrix}
\]

\(? = \text{don’t care}\)

Image from: deeplearning.ai, C4W3L01

Snapchat Facewarp?

- Traditional approach:
 - Viola Jones Face Detection
 - Search for actual point locations using Mahalanobis distance
 - Average eye and 82 facial feature points
 - Repeat ~3-5x
 - Restrict based on PCA statistics
Snapchat Facewarp?

• Deep Learning approach:

MT-CNN [Zhang et al. 2016]

Localization

• Facial feature

Each face has 68 points, so CNN would output:

- Face?
- pt1X
- pt1Y
- pt2X
- pt2Y
- ...
- ...
- pt68X
- pt68Y

137 outputs

Of course, need GT for thousands of faces to train model.
Can do same with Body Pose…

Object Detection

More than one object per image?

Training set:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Car detection example

Images from: deeplearning.ai, C4W3L03

Sliding Window Detection

Images from: deeplearning.ai, C4W3L03

R. Ptucha '18
Computing FC layers with Convolution

Replacing Sliding Windows w/Fully Convolutional CNNs
Replacing Sliding Windows w/Fully Convolutional CNNs

Sliding window approach:
Sequentially evaluate one window at a time

Fully convolutional approach:
Evaluate 64 regions at once

- Can think of this as evaluating an 8×8 grid, where each of the 64 cells is independently checked for an object:

\[
y = \begin{bmatrix} P \newline B_x \newline B_y \newline b_w \newline b_h \newline C_1 \newline C_2 \newline C_3 \newline C_4 \end{bmatrix}
\]

Prob. of an object

Object location

0/1 for each class

(Four classes in this example)
Replacing Sliding Windows w/ Fully Convolutional CNNs

- Overlay GT of object
- Cell where centroid lie is responsible.

Each cell has a y label: $y = \begin{bmatrix} P_c \\ b_x \\ b_y \\ b_w \\ b_h \\ C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix}$

Prob. of an object
Object location

0/1 for each class
(Four classes in this example)

Note1: cell upper left (0,0); cell lower right (1,1)
Note2: b_w and b_h can be > 1.0
How is Done in Practice?

1. Region proposals - use algorithms such as selective search or edge boxes to suggest potential bounding box locations.

![Region proposals diagram](image1)

How is Done in Practice?

2. Fully convolutional methods - replace fully connected layers with convolution.

![Fully convolutional methods diagram](image2)
How is Done in Practice?

3. Anchor boxes. What if two object centroids land in same cell?

\[
y = \begin{bmatrix}
 p_c \\
 b_x \\
 b_y \\
 b_w \\
 b_h \\
 c_{pers} \\
 c_{car} \\
 c_{truck} \\
 c_{motorc}
\end{bmatrix}
\]

- Anchor boxes. Allow multiple detections per cell. Define multiple anchor boxes per cell.
- Assign each GT object to closest Anchor shape (use max IoU).

R. Ptucha '18
Faster R-CNN: Region Proposal Network

- Add Additional Region Proposal Network (RPN) after last convolution layer.
- Train RPN to extract region proposals
- After RPN, use ROI Pooling which feeds a classifier and bbox regressor.

Image Credit: Ren et al. [3]

Faster R-CNN: Region Proposal Network

- Use 3×3 sliding window over last conv layer (conv5) feature map
- Create small networks for object classification and bounding box coordinates.
- At each location,
 - we determine if object present, and
 - the bounding box [x,y,w,h] coordinates gives exact localization in input image.

Image Credit: Kaiming He
Faster R-CNN: Region Proposal Network

For each of the n anchor boxes:

- Use n anchor boxes at each location:
 - 3 aspect ratios: 2:1, 1:1, 2:1
 - 3 scales, box areas of 128^2, 256^2, 512^2
- Use same anchor boxes at each location.
- Regression gives offset/scale of each anchor box.
- Classification gives probability of object at each anchor box.

Image Credit: Ren, Shaoqing, et al. [3]

Mask R-CNN

- Extension of Faster R-CNN
- Faster R-CNN used region proposal network (3×3 sliding window over conv5) predicts n anchor boxes at each location. Each anchor box has $[P(\text{object}), x, y, w, h]$
- Each anchor box then used for final network to predict $[P(\text{object}), x, y, w, h, C_1, C_2, \ldots, C_C]$
- Extend to also predict 28×28 pixel mask of object

Mask R-CNN

• Extension of Faster R-CNN
• Simultaneously predict bounding box along with object mask.
• Shown to work well on instance segmentation, bounding-box object detection, and person keypoint (body joint) detection.

Built on:
• ResNext [Xie et al., CVPR’17]
• Feature Pyramid Net [Lin et al., CVPR’17]
Figure 3. **Head Architecture**: We extend two existing Faster R-CNN heads [19, 27]. Left/Right panels show the heads for the ResNet C4 and FPN backbones, from [19] and [27], respectively, to which a mask branch is added. Numbers denote spatial resolution and channels. Arrows denote either conv, deconv, or fc layers as can be inferred from context (conv preserves spatial dimension while deconv increases it). All convs are 3×3, except the output conv which is 1×1, decons are 2×2 with stride 2, and we use ReLU [30] in hidden layers. Left: ‘res5’ denotes ResNet’s fifth stage, which for simplicity we altered so that the first conv operates on a 7×7 RoI with stride 1 (instead of 14×14 / stride 2 as in [19]). Right: ‘$\times 4$’ denotes a stack of four consecutive convs.
How get such nice masks with only 28×28 pix per mask?

Mask Prediction

Mask Prediction

Validation image with box detection shown in red

R. Ptucha '18
Human Pose

- Add keypoint head (28x28x17)
- Predict one “mask” for each keypoint
- Softmax over spatial locations (encodes one keypoint per mask “prior”)

17 keypoint “mask” predictions shown as heatmaps with OKS scores from argmax positions

FAIR Mask R-CNN, COCO + Places Workshop, ICCV 2017
Good Object Detection Libraries to Explore

• Tensorflow library for object detection (good for Tensorflow users, lots of algorithms)
 • https://github.com/tensorflow/models/tree/master/research/object_detection

• Facebook library for object detection (includes Mask R-CNN, based on Caffe2)
 • https://github.com/facebookresearch/Detectron

• YOLO
Thank you!!

Ray Ptucha
rwpeec@rit.edu

https://www.rit.edu/mil